Learn R Programming

shannon (version 0.2.0)

Truncated Birnbaum-Saunders distribution: Relative loss for various entropy measures using the truncated Birnbaum-Saunders distribution

Description

Compute the relative information loss of the Shannon, Rényi, Havrda and Charvat, and Arimoto entropies of the truncated Birnbaum-Saunders distribution.

Usage

rlse_bs(p, v)
rlre_bs(p, v, delta)
rlhce_bs(p, v, delta)
rlae_bs(p, v, delta)

Value

The functions rlse_bs, rlre_bs, rlhce_bs, and rlae_bs provide the relative information loss based on the Shannon entropy, Rényi entropy, Havrda and Charvat entropy, and Arimoto entropy, respectively, depending on the selected parametric values of the truncated Birnbaum-Saunders distribution, \(p\) and \(\delta\).

Arguments

v

The strictly positive scale parameter of the Birnbaum-Saunders distribution (\(v > 0\)).

p

The truncation time \((p>0)\).

delta

The strictly positive parameter (\(\delta > 0\)) and (\(\delta \ne 1\)).

Author

Muhammad Imran, Christophe Chesneau and Farrukh Jamal

R implementation and documentation: Muhammad Imran <imranshakoor84@yahoo.com>, Christophe Chesneau <christophe.chesneau@unicaen.fr> and Farrukh Jamal farrukh.jamal@iub.edu.pk.

References

Awad, A. M., & Alawneh, A. J. (1987). Application of entropy to a life-time model. IMA Journal of Mathematical Control and Information, 4(2), 143-148.

Chan, S., Nadarajah, S., & Afuecheta, E. (2016). An R package for value at risk and expected shortfall. Communications in Statistics Simulation and Computation, 45(9), 3416-3434.

Arimoto, S. (1971). Information-theoretical considerations on estimation problems. Inf. Control, 19, 181–194.

See Also

re_bs

Examples

Run this code
p <- c(1, 1.7, 3)
rlse_bs(p, 0.2)
rlre_bs(p, 0.2, 0.5)
rlhce_bs(p, 0.2, 0.5)
rlae_bs(p, 0.2, 0.5)

Run the code above in your browser using DataLab